3.615 \(\int \frac{(c x)^{3/2}}{\sqrt{a+b x^2}} \, dx\)

Optimal. Leaf size=127 \[ \frac{2 c \sqrt{c x} \sqrt{a+b x^2}}{3 b}-\frac{a^{3/4} c^{3/2} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{c x}}{\sqrt [4]{a} \sqrt{c}}\right ),\frac{1}{2}\right )}{3 b^{5/4} \sqrt{a+b x^2}} \]

[Out]

(2*c*Sqrt[c*x]*Sqrt[a + b*x^2])/(3*b) - (a^(3/4)*c^(3/2)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqr
t[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[c*x])/(a^(1/4)*Sqrt[c])], 1/2])/(3*b^(5/4)*Sqrt[a + b*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.070928, antiderivative size = 127, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.158, Rules used = {321, 329, 220} \[ \frac{2 c \sqrt{c x} \sqrt{a+b x^2}}{3 b}-\frac{a^{3/4} c^{3/2} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{c x}}{\sqrt [4]{a} \sqrt{c}}\right )|\frac{1}{2}\right )}{3 b^{5/4} \sqrt{a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(c*x)^(3/2)/Sqrt[a + b*x^2],x]

[Out]

(2*c*Sqrt[c*x]*Sqrt[a + b*x^2])/(3*b) - (a^(3/4)*c^(3/2)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqr
t[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[c*x])/(a^(1/4)*Sqrt[c])], 1/2])/(3*b^(5/4)*Sqrt[a + b*x^2])

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{(c x)^{3/2}}{\sqrt{a+b x^2}} \, dx &=\frac{2 c \sqrt{c x} \sqrt{a+b x^2}}{3 b}-\frac{\left (a c^2\right ) \int \frac{1}{\sqrt{c x} \sqrt{a+b x^2}} \, dx}{3 b}\\ &=\frac{2 c \sqrt{c x} \sqrt{a+b x^2}}{3 b}-\frac{(2 a c) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+\frac{b x^4}{c^2}}} \, dx,x,\sqrt{c x}\right )}{3 b}\\ &=\frac{2 c \sqrt{c x} \sqrt{a+b x^2}}{3 b}-\frac{a^{3/4} c^{3/2} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{c x}}{\sqrt [4]{a} \sqrt{c}}\right )|\frac{1}{2}\right )}{3 b^{5/4} \sqrt{a+b x^2}}\\ \end{align*}

Mathematica [C]  time = 0.0234116, size = 69, normalized size = 0.54 \[ \frac{2 c \sqrt{c x} \left (-a \sqrt{\frac{b x^2}{a}+1} \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};-\frac{b x^2}{a}\right )+a+b x^2\right )}{3 b \sqrt{a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c*x)^(3/2)/Sqrt[a + b*x^2],x]

[Out]

(2*c*Sqrt[c*x]*(a + b*x^2 - a*Sqrt[1 + (b*x^2)/a]*Hypergeometric2F1[1/4, 1/2, 5/4, -((b*x^2)/a)]))/(3*b*Sqrt[a
 + b*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.008, size = 125, normalized size = 1. \begin{align*} -{\frac{c}{3\,{b}^{2}x}\sqrt{cx} \left ( \sqrt{{ \left ( bx+\sqrt{-ab} \right ){\frac{1}{\sqrt{-ab}}}}}\sqrt{2}\sqrt{{ \left ( -bx+\sqrt{-ab} \right ){\frac{1}{\sqrt{-ab}}}}}\sqrt{-{bx{\frac{1}{\sqrt{-ab}}}}}{\it EllipticF} \left ( \sqrt{{ \left ( bx+\sqrt{-ab} \right ){\frac{1}{\sqrt{-ab}}}}},{\frac{\sqrt{2}}{2}} \right ) \sqrt{-ab}a-2\,{b}^{2}{x}^{3}-2\,abx \right ){\frac{1}{\sqrt{b{x}^{2}+a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x)^(3/2)/(b*x^2+a)^(1/2),x)

[Out]

-1/3/x*c*(c*x)^(1/2)/(b*x^2+a)^(1/2)*(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a
*b)^(1/2))^(1/2)*(-x*b/(-a*b)^(1/2))^(1/2)*EllipticF(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*(-a*
b)^(1/2)*a-2*b^2*x^3-2*a*b*x)/b^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (c x\right )^{\frac{3}{2}}}{\sqrt{b x^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(3/2)/(b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((c*x)^(3/2)/sqrt(b*x^2 + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x} c x}{\sqrt{b x^{2} + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(3/2)/(b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x)*c*x/sqrt(b*x^2 + a), x)

________________________________________________________________________________________

Sympy [C]  time = 2.59322, size = 44, normalized size = 0.35 \begin{align*} \frac{c^{\frac{3}{2}} x^{\frac{5}{2}} \Gamma \left (\frac{5}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{5}{4} \\ \frac{9}{4} \end{matrix}\middle |{\frac{b x^{2} e^{i \pi }}{a}} \right )}}{2 \sqrt{a} \Gamma \left (\frac{9}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)**(3/2)/(b*x**2+a)**(1/2),x)

[Out]

c**(3/2)*x**(5/2)*gamma(5/4)*hyper((1/2, 5/4), (9/4,), b*x**2*exp_polar(I*pi)/a)/(2*sqrt(a)*gamma(9/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (c x\right )^{\frac{3}{2}}}{\sqrt{b x^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(3/2)/(b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate((c*x)^(3/2)/sqrt(b*x^2 + a), x)